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A theoretical examination is made of the mechanical quasi-equilibrium stability of a
horizontal, binary-mixture layer with Soret effect in the presence of a high-frequency
vibrational field. The boundaries of the layer are assumed to be rigid, isothermal
and impermeable. The axis of vibration is longitudinal. The study is based on
the system of equations describing the behaviour of mean fields. The conditions of
quasi-equilibrium are formulated. A linear stability analysis for normal modes is
carried out. In the limit of long-wave disturbances the regular perturbation method
is used with the wavenumber as a small parameter. For the case of an arbitrary
wavenumber, the calculations are made using straight forward numerical integration.
The boundaries of stability and the critical disturbance characteristics are determined
for representative parameter values. Different instability mechanisms and forms are
discussed.

1. Introduction
It is known that the vibration of a cavity filled with fluid having temperature

inhomogeneity can generate some regular mean flows even in the absence of a static
gravity field, i.e. under conditions of pure weightlessness – the phenomenon of
thermovibrational convection (Gershuni & Zhukhovitsky 1979, 1981). In the limit
of high frequency and small amplitude the method of averaging can be effectively
applied to investigate thermovibrational convection. In the theory of convection this
method was first used by Zen’kovskaya & Simonenko (1966) to study the effect of
high-frequency vertical vibration on the stability of a horizontal fluid layer heated
from below.

Under certain conditions mechanical quasi-equilibrium is possible, i.e. the state with
zero mean velocity and generally non-zero oscillatory component. Some examples
of quasi-equilibrium configurations with results of linear convective stability analysis
were presented by Gershuni & Zhukhovitsky (1979, 1981) and later by Braverman
(1984, 1987a, b).

In the case of pure weightlessness only the specific thermovibrational mecha-
nism is responsible for instability excitation. In the presence of static gravity both
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thermogravitational and thermovibrational mechanisms occur. The configuration
corresponding to a horizontal layer heated either from below or from above under
longitudinal vibration is considered by Braverman et al. (1984). The experimental
results given by Zavarykin, Zorin & Putin (1988) are in good agreement with the
theoretical ones. The works of Gershuni, Zhukhovitsky & Kolesnikov (1986, 1990),
Gershuni & Zhukhovitsky (1988) and Gershuni et al. (1989, 1992) are devoted to
different aspects of linear and nonlinear instability caused by static gravity and vibra-
tion in the presence of internal heat generation, and the experimental results reported
by Kozlov & Shatunov (1988) agree fairly well with the theoretical prediction.

In our short review we consider only the papers which tackle the problem of
quasi-equilibrium vibrational stability. Additional references concerning this problem
can be found in Chernatynsky, Gershuni & Monti (1993).

All the papers cited above dealt with a one-component fluid. For a binary mixture
with inhomogeneous concentration, additional buoyancy forces due to gravity and
vibrational fields appear as well as an additional dissipative mechanism caused by
diffusion (and thermodiffusion). The problem is thus more complicated. To the best of
our knowledge, only two papers have appeared on the problem of vibrational stability
of binary mixtures. Zen’kovskaya (1981) studied a horizontal layer of the mixture
with physically non-realistic boundary conditions. Braverman (1987a, b) considered
the case of weightlessness when the three vectors – temperature gradient, concentration
gradient and the axis of vibration – belong to common plane, perpendicular to the
layer; the solution corresponding to a long wave mode is obtained. The Soret effect
is not taken into account either by Zen’kovskaya (1981) or by Braverman (1987). But
it is not just this reason which makes us to study the stability of the mixture with
Soret effect.

The stability of the solidification front of alloys is modified by constitutional
supercooling. The Soret effect must be taken into account as it can modify the
concentration gradient in the liquid near the liquid–solid interface as stated by Van
Vaerenbergh & Legros (1990). It has been shown that, depending on the sign of the
thermodiffusion coefficient, morphological stability may be increased or decreased,
oscillatory regimes of convection are also foreseen (see e.g. Hurle 1983 and Van
Vaerenbergh et al. 1995).

It is expected when processing materials under reduced gravity conditions that the
remixing of components by buoyancy-induced convection will be strongly reduced.
But the gravity level on board orbital laboratories is not constant: the orientation
changes of the vehicles induce low-frequency gravity variation and the activities on
board (crew motions, motors, etc.) create g-jitter fluctuating randomly in magnitude
and direction.

Furthermore, during some experiments on board Spacelab they have deal with
plane layers of binary mixtures in the presence of high-frequency vibrations. It
appeared interesting to study the influence of thermodiffusion (the Soret effect) on
the threshold of convection in the presence of vibration and a residual static gravity
field. The next question is how to control the onset of convection in binary mixtures
by means of vibrations.

In the present work we study the double-diffusive situation, i.e. the convective
instability of a horizontal binary mixture plane layer with Soret effect subject to a
static gravitational field and longitudinal high-frequency vibration. It is demonstrated
that under these circumstances the mechanical quasi-equilibrium is possible. The
analysis of its linear stability with respect to two-dimensional disturbances of normal
mode type is performed. In the limiting case free of vibration, the problem reduces to
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Figure 1. Geometry and coordinate system.

the known one (Legros, Platten & Poty 1972; Platten & Legros 1984, containing an
extensive bibliography). In the opposite limit of zero gravity, only one mechanism of
excitation (vibrational) is operative and the problem reduces to vibrational convective
stability of a binary mixture with Soret effect in weightlessness. We concentrate also
on situations when instability is caused by both mechanisms – vibrational and
gravitational.

In §2 we describe the problem and write down the basic system of equations
governing free convection of a binary mixture with Soret effect under vibration in the
framework of the standard Boussinesq approximation. In §3 the system of equations
for mean fields is obtained by applying the averaging technique. Non-dimensional
parameters of the problem are introduced. In §4 the conditions of quasi-equilibrium
are formulated in general form and in reference to the case considered. Section
5 is devoted to the statement of the stability problem. The spectral problem for
amplitudes of two-dimensional-normal disturbances is formulated. In §6 we consider
the limit of the long-wave mode and develop a regular perturbation method with the
wavenumber as a small parameter for expansion. The numerical results for the case
of arbitrary values of the wavenumber are presented and discussed in §7.

2. Description of the problem; basic equations
Let us consider an infinite plane horizontal layer of a binary mixture with Soret

effect. The layer is confined between two rigid isothermal and impermeable planes
z = 0 and z = h (the geometry and coordinate system are shown in figure 1).
The temperature of the lower plane is constant and equal to Θ, the temperature
of the upper plane is also constant and it is taken as the reference point. Thus
Θ > 0 corresponds to the case of heating from below while Θ < 0 refers to heating
from above. Both boundaries are impermeable, and there is no externally imposed
difference of concentration. The only reason for concentration inhomogeneity is the
Soret effect (de Groot 1945; de Groot & P. Mazur 1984; Tyrrell 1961). The fluid layer
and its boundaries undergo linear harmonic oscillations in the x-axis direction. The
object is to study the possibility of mechanical quasi-equilibrium and to carry out the
linear analysis of its stability.

Assuming the validity of Boussinesq approximation one must neglect the mechanical
compressibility. Then the deviations of temperature T and concentration C (expressed
as a mass fraction) from their standard constant values T̄ and C̄ are relatively small
and the equation of state has the form

ρ = ρ̄(1− β1T − β2C), (2.1)

where ρ is the fluid density and ρ̄ is its standard constant value; β1 > 0 is the thermal
expansion coefficient and β2 is the concentrational coefficient of the density. Taking
C as the concentration of the lighter component, β2 > 0 .
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We introduce the appropriate (non-inertial) coordinates connected with the oscil-
lating system (cavity with fluid). To write the equation of motion in the appropriate
system of coordinates it is necessary to replace the gravity acceleration g by

g→ g+ bΩ2 cosΩtn. (2.2)

Here b is the displacement amplitude, Ω is the angular frequency and n is the unit
vector along the axis of vibration. The second term in the right-hand side of (2.2) is
purely vibrational acceleration. Then we have the equation of motion in the form

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + g(β1T + β2C)γ − (β1T + β2C)bΩ2 cosΩtn. (2.3)

Here v is the velocity, ν is the kinematic viscosity of the fluid, γ is the unit vector
directed vertically upward.

Now let us write down the diffusion equation. Taking into account the thermodif-
fusional Soret effect, the flux of the lighter component is given by

j = −ρ̄D(∇C + α∇T ), (2.4)

where D is the coefficient of diffusion and α is the thermodiffusional ratio. It is
evident that in the case of the normal Soret effect, the lighter component moves
towards higher temperature and α < 0 .

Note that for many liquid solutions, β1T is of the same order of magnitude as β2C
induced by the Soret effect.

At the level of the linear approximation for the concentration distribution induced
at the steady state by the Soret effect, (2.1) can also be written as

∇ρ(T ,C) =

[
∂ρ

∂T
+
∂ρ

∂C
α

]
∇T .

For α < 0 (‘anomalous effect’), the Soret effect is thus competing against the
effect of the thermal expansion and situations exist with β1T = −β2C , i.e. that a
non-isothermal system may have a constant density.

On the other hand, for α > 0 (‘normal effect’) the Soret effect contributes to
reinforce the density gradient induced by the thermal expansion.

In concentrated solutions, this contribution of the Soret effect to the density profile
is generally not small with respect to the thermal expansion effect and has dramatic
consequences on the hydrodynamic stability of the system (see e.g. Legros et al. 1972
and Hurle & Jakeman 1971)

Hereafter we shall assume that characteristic differences of temperature and con-
centration are not large, and the coefficients D and α are independent of temperature
and concentration. Then the diffusion equation is of the form

∂C

∂t
+ v · ∇C = D(∇2C + α∇2T ). (2.5)

The heat transport and continuity equations are written as

∂T

∂t
+ v · ∇T = κ∇2T , (2.6)

∇ · v = 0, (2.7)

where κ is the heat diffusivity coefficient.
The equations (2.3), (2.5)–(2.7) with appropriate initial and boundary conditions
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describe thermal and concentrational free convection in the appropriate system of
coordinates under static gravity and vibration.

3. The system of equations for mean fields
In the limiting case of high frequency and small amplitude of vibration the method

of averaging can be applied effectively to study the phenomena of vibrational con-
vection. This technique is widely used in different areas of physics and mechanics
(Landau & Lifshitz 1988). According to this method we subdivide each field into
two parts: the first part varies slowly with time (the characteristic time is large with
respect to the vibration period) and the second one varies quickly with time (the
characteristic time is of the order of magnitude of the vibration period). Thus we
have the decompositions

v = ṽ + v′, p = p̃+ p′, T = T̃ + T ′, C = C̃ + C ′. (3.1)

Here ṽ, p̃, T̃ and C̃ are the ‘slow’ (averaged) fields, and v′, p′, T ′ and C ′ are the ‘quick’
(small) parts. Now substitute (3.1) into the equation of motion (2.3), separate the
‘quick’ parts and simplify the equation for the oscillatory part as much as possible.
Retaining only the main terms we obtain

∂v′

∂t
= −1

ρ
∇p′ − bΩ2 cosΩtn(β1T̃ + β2C̃). (3.2)

In the left-hand side of (3.2) we keep only the term with the derivative with respect
to (quick) time, while in the right-hand side we neglect the viscous term. It means
that the frequency of vibration must be high (but below acoustic), so the period of
vibration τ must be small with respect to all characteristic hydrodynamic times:

τ� min(h2/ν, h2/κ, h2/D). (3.3)

Then in the left-hand side of (3.2) we neglect the nonlinear term (v′ · ∇)v′ with respect
to ∂v′/∂t. It means that the displacement amplitude must be small in the sense

b� h

β1Θ
. (3.4)

Here β1Θ is a non-dimensional parameter which is small in the framework of the
Boussinesq approach. Thus the amplitude of displacement may be even larger than
the characteristic scale.

Finally, in the right-hand side of (3.2) we neglect the gravitational buoyancy forces
for the ‘quick’ component of the flow. Thus we have

g

bΩ2

b

h
β1Θ � 1. (3.5)

The criteria (3.3)–(3.5) will be discussed below.
Now we decompose the vector n(β1T̃ + β2C̃) in (3.2) as follows:

n(β1T̃ + β2C̃) = w + ∇ϕ, (3.6)

where w is its solenoidal part and ∇ϕ is its potential one. Substituting (3.6) into (3.2)
and separating solenoidal parts we have

∂v′

∂t
= −bΩ2cosΩtw. (3.7)
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Integrating over the quick time yields

v′ = −bΩ sinΩtw. (3.8)

We see that the additional slow variable w is not only the solenoidal part of the
vector n(β1T̃ + β2C̃); it is also the slow variation with time of the amplitude of the
oscillatory velocity component (in some other scale).

An analogous procedure must be applied to equations (2.5) and (2.6). The result is

T ′ = −b cosΩt(w · ∇T̃ ), C ′ = −b cosΩt(w · ∇C̃). (3.9)

One could see that the criteria (3.3)–(3.5) are obtained by means of estimations of
oscillating parts of the fields v′, T ′ and C ′ according to (3.8), (3.9):

v′ ∼ bΩβ1Θ, T ′ ∼ C ′ ∼ bβ1Θ
2/h.

Thus the relations among oscillatory and averaged parts of the fields are determined.
The formulae (3.8) and (3.9) give the solution of the ‘closing’ problem. The last step
is to substitute the decomposition (3.1) with v′, T ′ and C ′ determined by (3.8), (3.9)
into the basic system (2.3), (2.5)–(2.7) and perform the averaging procedure. After
integration over the quick time we obtain the closed system of equations for mean
fields. With tildes omitted we have

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + g(β1T + β2C)γ + 1

2
b2Ω2(w · ∇) [(β1T + β2C)n− w] ,

(3.10)

∂T

∂t
+ v · ∇T = κ∇2T , (3.11)

∂C

∂t
+ v · ∇C = D(∇2C + α∇2T ), (3.12)

∇ · v = 0, (3.13)

∇ · w = 0, ∇× w = ∇(β1T + β2C)× n. (3.14)

Notice that in the limit of high frequency and small amplitude the effect of vibration
is determined by the product bΩ .

Boundary conditions for velocity, temperature and concentration must be imposed
in accordance with the physical statement of the problem. When establishing the
boundary condition for the additional ‘slow’ variable w we should keep in mind
that the viscous term in equation (3.2) for the oscillatory velocity component v′ is
neglected (in this approach the dynamic Stokes layer is not resolved). Hence we
cannot formulate the non-slip condition for the oscillatory part of the velocity, and
the non-overflow condition will be appropriate, i.e. wn|F = 0 where F is the rigid
boundary.

In the case of a plane horizontal layer bounded by rigid isothermal and impermeable
planes we have the following set of boundary conditions:

at z = 0 and z= h : v = 0, wz = 0,
∂C

∂z
+ α

∂T

∂z
= 0,

at z= 0 : T = Θ,
at z= h : T = 0.

 (3.15)

The governing system (3.10)–(3.14) with appropriate boundary conditions determines
the mean flow in the presence of high-frequency vibration. Using (3.8), (3.9) we may
also find the oscillatory parts of the fields.
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We introduce non-dimensional variables with the help of the following scales: h for
distance, h2/κ for time, κ/h for velocity, Θ for temperature, β1Θ/β2 for concentration,
β1Θ for w and ρκ2/h2 for pressure. Thus we obtain the system of governing equations
for non-dimensional variables

∂v

∂t
+(v · ∇)v = −∇p+Pr∇2v+RaPr(T + C)γ+RavP r(w · ∇) [(T + C)n− w] , (3.16)

∂T

∂t
+ v · ∇T = ∇2T , (3.17)

∂C

∂t
+ v · ∇C = Le∇2(C − εT ), (3.18)

∇ · v = 0, (3.19)

∇ · w = 0, ∇× w = ∇(T + C)× n. (3.20)

The non-dimensional form of boundary conditions is

at z = 0 and z= 1 : v = 0, wz = 0, ∂C
∂z
− ε ∂T

∂z
= 0,

at z= 0 : T = 1,
at z= 1 : T = 0.

 (3.21)

The problem formulated involves the following non-dimensional parameters: the
Rayleigh number Ra, the vibrational analogue of the Rayleigh number Rav , the
Prandtl and Lewis numbers Pr and Le, the parameter of the Soret effect ε. These
parameters are defined by

Ra =
gβ1Θh

3

νκ
, Rav =

(bΩΘhβ1)
2

2νκ
, ε = −αβ2

β1

, P r =
ν

κ
, Le =

D

κ
. (3.22)

The Rayleigh number Ra is positive when the system is heated from below and
negative when heated from above. The vibrational Rayleigh number Rav is always
positive in accordance with its definition. The Soret parameter ε is positive in the
case of the normal effect and negative in the case of the anomalous effect.

4. Mechanical quasi-equilibrium
Under certain conditions mechanical quasi-equilibrium is possible, i.e. the state

at which the mean velocity is zero but the oscillatory part, in general, exists. To
determine the necessary conditions of mechanical quasi-equilibrium we refer to (3.16)–
(3.20). Equating velocity to zero we seek the steady-state distributions of temperature,
concentration, pressure and w. Applying the curl procedure to both sides of (3.16) we
obtain the equations for quasi-equilibrium fields T0, C0,w0 :

∇(T0 + C0)× [Raγ − Rav∇(w0 · n)] = 0,

∇2T0 = 0, ∇2C0 = 0,

∇ · w0 = 0, ∇× w0 = ∇(T0 + C0)× n

 (4.1)

with appropriate boundary conditions.
The quasi-equilibrium state exists only in some special cases of geometry, conditions

of heating and vibration. It can be seen that for a horizontal plane layer with boundary
conditions (3.21) the quasi-equilibrium state occurs and has the following structure:

T0 = T0(z), C0 = C0(z), w0x = w0(z), w0y = w0z = 0, (4.2)
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where the quasi-equilibrium profiles have the form

T0 = 1− z, dC0

dz
= −ε, w0 = −(1 + ε)

(
z − 1

2

)
. (4.3)

In this case the oscillatory flow in quasi-equilibrium is longitudinal. We suppose that
there is no net oscillatory flow: ∫ 1

−1

w0dz = 0. (4.4)

It is easy to see that distributions (4.2), (4.3) satisfy all the conditions (4.1) and
(3.21). Thus the mechanical quasi-equilibrium state in the situation considered exists
at arbitrary values of Ra and Rav .

5. Formulation of the stability problem
To study the linear stability of mechanical quasi-equilibrium we consider perturbed

fields:

v, T0 + T ′, C0 + C ′, p0 + p′, w0 + w′. (5.1)

After linearization we obtain the following system of equations for small disturbances:

∂v

∂t
= −∇p′ + Pr∇2v + RaPr(T ′ + C ′)γ

+ RavP r
{

(w0 · ∇)
[
(T ′ + C ′)n− w′

]
+ (w′ · ∇) [(T0 + C0)n− w0]

}
, (5.2a)

∂T ′

∂t
+ v · ∇T0 = ∇2T ′, (5.2b)

∂C ′

∂t
+ v · ∇C0 = Le∇2(C ′ − εT ′), (5.2c)

∇ · v = 0, (5.2d)

∇ · w′ = 0, ∇× w′ = ∇(T ′ + C ′)× n (5.2e)

with homogeneous boundary conditions

at z = 0 and z = 1 : v = 0, T ′ = 0, w′z = 0,

∂C ′

∂z
− ε∂T

′

∂z
= 0.

 (5.3)

By analogy with the problem of thermovibrational convective stability in a layer
filled with a one-component fluid it might be expected that two-dimensional distur-
bances are the most unstable ones. So we consider two-dimensional-disturbances
v(vx, 0, vz), w

′(w′x, 0, w
′
z), T

′, C ′ and p′ which are independent of the coordinate y. We
eliminate the disturbance of pressure p′ and introduce the stream functions Ψ and F
for solenoidal vectors v and w′ respectively:

vx =
∂Ψ

∂z
, vz = −∂Ψ

∂x
; w′x =

∂F

∂z
, w′z = −∂F

∂x
. (5.4)

Now introduce disturbances of normal mode type:

(Ψ,T ′, C ′, F) = (ϕ(z), θ(z), ξ(z), f(z)) exp(−λt+ ikx). (5.5)
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Here k is the wavenumber, λ is the decay rate, ϕ(z), θ(z), ξ(z) and f(z) are the
amplitudes.

Substituting (5.5) into the system of equations for disturbances gives the system of
equations for amplitudes

−λDϕ = PrD2ϕ+ ikRaPr(θ + ξ) + ikRavP r(1 + ε)(θ + ξ − f′),
−λθ − ikϕ = Dθ,

−λξ − ikεϕ = LeD(ξ − εθ),

Df = θ′ + ξ′.

 (5.6)

Here the prime indicates differentiation with respect to the transversal coordinate z
and D is the operator D = d2/dz2 − k2.

Using (5.3) one can obtain the boundary conditions for the amplitudes:

at z = 0 and z = 1 : ϕ = ϕ′ = 0, θ = 0, f = 0,

ξ′ − εθ′ = 0.

}
(5.7)

The system of equations (5.6) with boundary conditions (5.7) corresponds to the
spectral amplitude problem with the decay rate λ as an eigenvalue and with amplitudes
as eigenvector components. The characteristic values of the decay rate depend on all
the parameters of the problem:

λ = λ(Ra, Rav, P r, Le, ε, k). (5.8)

The decay rate λ is complex in general, λ = λr + iλi because the spectral amplitude
problem is not self-conjugated. If λi = 0 the stability boundary is determined by the
condition λ = 0 (the monotonic mode of instability). If λi 6= 0 the stability boundary
is determined by the condition λr = 0 and in this case λi is the frequency of neutral
oscillation (the oscillatory mode of instability). Note that in accordance with our
averaging approach the frequency λi must be small with respect to the frequency of
vibration.

6. The limiting case of the long-wave mode
We may expect that because of the impermeability condition for concentration

the long wave instability with k = 0 plays a substantial role for some range of
parameters (physically this means that the disturbance wavelength is much larger
than the thickness of the layer). Then the decay rate spectrum and stability boundary
for long-wave disturbances may be determined by applying the regular perturbation
method with the wave number k as a small parameter. The solution is constructed in
the form of power expansions:

ϕ= ϕ0 + kϕ1 + k2ϕ2 + · · · ,

θ= θ0 + kθ1 + k2θ2 + · · · ,

ξ = ξ0 + kξ1 + k2ξ2 + · · · ,

f = f0 + kf1 + k2f2 + · · · ,

λ= λ0 + kλ1 + k2λ2 + · · · .


(6.1)
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Substituting these expansions in the system of amplitude equations (5.6) and equating
the terms with the same order of k we obtain the systems of successive approximations
(the boundary conditions for each order coincide with the set (5.7)).

For the zero order we have

−λ0ϕ0 = Prϕiv
0 ,

−λ0θ0 = θ′′0 ,

−λ0ξ0 = Le(ξ′′0 − εθ′′0 ),

f0 = θ′0 + ξ′0.

 (6.2)

It can be seen that all the levels of the decay rate spectrum correspond to damping
disturbances except for one level which is of ‘concentrational type’ and neutral:

λ0 = 0, ϕ0 = 0, θ0 = 0, f0 = 0, ξ0 = const , (6.3)

Here const can be chosen equal to unity, for example, under appropriate normaliza-
tion.

For the first order we obtain the non-homogeneous system of equations:

ϕiv
1 = −iξ0 [Ra+ (1 + ε)Rav] ,

θ′′1 = 0,

Le(ξ′′1 − εθ′′1 ) = −ξ0λ1,

f′′1 = θ′1 + ξ′1.

 (6.4)

The solvability condition for this system can be derived by integrating both sides of
the third equation with respect to z from 0 to 1, taking into account the impermeability
boundary condition. This yields λ1 = 0 . Thus we obtain the first-order solution:

λ1 = 0, θ1 = 0, ξ′1 = 0, f1 = 0,

ϕ1 = − iξ0

24
[Ra+ (1 + ε)Rav] z

2(1− z)2.

 (6.5)

For the second order we have

ϕiv
2 = −iξ1 [Ra+ (1 + ε)Rav] ,

θ′′2 = −iϕ1,

Le(ξ′′2 − εθ′′2 ) = ξ0(Le− λ2)− iεϕ1,

f′′2 − θ′2 − ξ′2 = 0.

 (6.6)

The condition of solvability for this non-homogeneous system may be obtained by
integrating the third equation with respect to z from 0 to 1 :

ξ0(Le− λ2)− iε

∫ 1

0

ϕ1dz = 0. (6.7)

After substituting ϕ1 from (6.5) we have

λ2 = Le− ε

720
[Ra+ (1 + ε)Rav] . (6.8)

It is readily seen that the decay rate λ is real, so the long-wave instability is of
monotonic type. The stability boundary is determined from the condition λ2 = 0.
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Figure 2. Boundaries of long-wave instability. Regions of instability are
hatched. (a) Rav = 0, (b) Ra = 0.

This leads to

Ra+ (1 + ε)Rav =
720Le

ε
. (6.9)

When Rav = 0, i.e. vibration is absent, then

Ra =
720Le

ε
. (6.10)

Thus the long-wave instability exists in the case of normal Soret effect when heated
from below and in the case of anomalous Soret effect when heated from above (see
figure 2a). Note that the dimensional density gradient in equilibrium state is equal to

dρ

dz
=
ρ̃β1Θ

h
(1 + ε).

From this follows that the anomalous Soret effect with ε = −1 corresponds to the
equilibrium state without vertical density stratification. The instability in this case is
caused by the double-diffusive mechanism.

In the opposite limiting case when Ra = 0 (pure weightlessness) we obtain from
(6.9)

Rav =
720Le

ε(1 + ε)
. (6.11)

The instability in this case is caused by the vibrational mechanism and exists in the
range ε > 0 (normal Soret effect) and ε < −1 (strong anomalous Soret effect). Within
the interval −1 < ε < 0 the long-wave instability is absent (see figure 2b); formally in
this interval the critical vibrational Rayleigh number is negative.

In the general case (Ra 6= 0, Rav 6= 0) the relation (6.9) shows that the boundary of
stability in the plane (Ra, Rav) is linear.

To find out whether the long-wave mode with k = 0 is the most unstable or not
it is necessary to compare the above analytical results with numerical ones obtained
for the case of an arbitrary value of the wavenumber k .

7. Numerical results and discussion
To solve the complete spectral amplitude problem formulated by (5.6) and (5.7)

for arbitrary (finite) values of the wavenumber the numerical technique was applied.
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Figure 3. The stability diagrams in the plane Ram/ε for the case Rav = 0. The solid lines represent
the monotonic cellular modes, the dashed lines correspond to the oscillatory cellular modes and
the dotted lines to the monotonic long wave modes: curve 1, Le = 1; 2, Le = 1.5; 3, Le = 0.5;
4, Le = 0.01.

The straightforward numerical integration of the system of equations for amplitudes
by means of the Runge–Kutta–Merson method was used in combination with the
shooting procedure. This enables one to find the eigenvalue λ from the spectral
problem numerically and, in particular, to determine the boundaries of stability and
the characteristics of critical disturbances, such as the wavenumbers of the most
unstable modes and the critical frequencies of oscillatory modes.

We have explored a large set of parameters. Some computational results of the
instability characteristics for representative values of the parameters Rav, Ra and Le
are presented. We use the following definition of the Lewis number: Le = D/κ, It
has been varied from 0.01 up to 1.5.

Let us recall here that for gaseous mixtures generally Le ∼ 1, as D is of the same
order of magnitude as κ. On the other hand, for liquid mixtures, usually Le � 1, for
instance for solutions like water–salt, water–sugar, water–ethanol, Le ∼ 0.01.

The results are presented in figures 3–9.
Since for gaseous mixtures both Le > 1 and Le < 1 are possible because D ∼ κ,

we will refer to ‘the case of a gaseous mixture’ if Le ∼ 1. On the other, since for
liquid mixtures usually Le � 1 (the thermal diffusivity is normally much larger than
the molecular diffusivity) we will speak in such conditions of the ‘case of a typical
liquid mixture’.

7.1. The case of no vibration (Rav = 0)

First consider the results for the simplest case when vibration is absent, Rav = 0,
and only the gravitational mechanism is responsible for instability excitation. In
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Figure 4. The stability diagrams for the case Ra = 0 (weightlessness). The nomenclature
and numeration of lines are the same as in figure. 3.

figure 3 the minimal critical values of the Rayleigh number Ram are presented as
functions of the non-dimensional Soret parameter ε for a few combinations of the
other parameters (the minimization is made with respect to the wavenumber k). The
solid lines correspond to the boundaries of monotonic instability of cellular form
(the minima of the neutral curves are at km 6= 0); the dashed lines correspond to the
oscillatory cellular critical modes, and the dotted lines to the long-wave monotonic
modes. The results on long-wave instability presented in figures 3–9 by dotted lines
are also obtained numerically. They coincide perfectly with the analytical ones (6.10).

Lines 1 correspond to the Lewis number value Le = 1 (for example the case of
a gaseous mixture with Pr = Sc = 1; here Sc = ν/D is the Schmidt number). It is
obvious physically that under such conditions no oscillatory instability exists since the
characteristic diffusion time and the heat diffusivity time coincide. Lines 2 correspond
to Le = 1.5 (Le > 1), for instance for a model gaseous mixture with Pr = 0.75 and
Sc = 0.5. In this case an oscillatory instability is possible but the monotonic one is
more unstable. Lines 3 correspond to Le = 0.5 (Le < 1 ), e.g. corresponding to a
model gaseous mixture with Pr = 0.75 and Sc = 1.5.

It is seen that there is a competition between monotonic and oscillatory instability
modes in the range of the anomalous Soret effect (ε < 0). Lines 4 correspond to a
typical liquid binary mixture (like salt–water solution), namely Pr = 6.7 and Sc = 677
(Le ≈ 0.01, Le� 1). In this case monotonic and oscillatory modes are also competing
at ε < 0; in practically the entire range ε < 0 the oscillatory mode is the most unstable
when the layer is heated from below.

Note that all the stability lines in the region Ram > 0 intersect the axis Ram at the
point Ram = 1708 which corresponds to the Rayleigh–Bénard instability boundary
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Figure 5. Critical values of Rayleigh number Ram versus non-dimensional Soret parameter ε for
fixed Le = 1 and several values of vibrational Rayleigh number: 1, Rav = 0; 2, Rav = 200;
3, Rav = 1000; 4, Rav = 2129; 5, Rav = 3000.

for a one-component fluid. We recall that in our statement of the problem it
has been supposed that there is no imposed concentration difference, and the only
concentration difference which exists is caused by the Soret effect. Thus the transition
to the case of one-component liquid corresponds to ε→ 0.

Furthermore by virtue of the system of amplitude equations (5.6) the stability
boundaries for monotonic modes do not depend individually on the Prandtl and
Schmidt numbers but only on their combination Pr/Sc ≡ Le .

The picture presented in figure 3 displays the following features:
(i) destabilization at ε > 0 which is highly pronounced in the case of a liquid

mixture. This destabilization of the quasi-equilibrium is physically evident as in this
case of normal Soret effect (ε > 0) the lightest component of the mixture migrates
in the direction of the hot plate, i.e. down; (see e.g. Legros et al. 1972). Thus
the non-stable stratification of the liquid layer increases and the critical temperature
difference necessary for the instability excitation, decreases;

(ii) stabilization and in some cases the existence of oscillatory modes at ε < 0;
(iii) the existence of monotonic instability modes at ε < 0 and Ra < 0, i.e. when

the layer is heated from above.
The data describing the wavenumber km of the most unstable mode and the neutral

frequency λim are presented at the top of the figure.

7.2. The case of weightlessness (Ra = 0)

Let us discuss further the opposite limiting case, Ra = 0, which corresponds to a state
of pure weightlessness. Here only the vibrational mechanism of instability excitation
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Figure 6. Critical values of Rayleigh number Ram versus ε for a gaseous mixture with
Le = 1.5 (Le > 1) and different values of vibrational Rayleigh number: 1, Rav = 0; 2, Rav = 2129;
3, Rav = 5000.

is operative. In figure 4 the critical values of the vibrational Rayleigh number Ravm
(minimized with respect to the wavenumber k) and the critical disturbance charac-
teristics are plotted versus the non-dimensional Soret parameter ε. The nomenclature
and numeration of lines are the same as in figure 3.

When ε = 0 the problem reduces to that of a one-component fluid. In this case
the critical value of the vibrational Rayleigh number is Ravm = 2129 and the critical
wavenumber is km = 3.23 (Gershuni & Zhukhovitsky 1979). It is seen that for
ε > 0 destabilization takes place. On the other hand in the range −1 < ε < 0 the
quasi-equilibrium is stabilized because of the Soret effect. The influence of the Soret
mechanism on stability is very strong, especially in the case of a liquid mixture (note
the use of a logarithmic scale along the Rav-axis). For ε < −1 instability also exists
and the long-wave mode plays an important role. As mentioned above (see figure
2b), there is no long-wave instability inside the gap −1 < ε < 0. It can be seen also
that in this region, cellular instability of both monotonic and oscillatory character
can coexist.

7.3. Combined case

Let us consider a few examples of calculations corresponding to the general case when
both parameters Ra and Rav are not equal to zero and both physical mechanisms of
instability excitation coexist. Figure 5 demonstrates the effect of vibration on stability
in the case of Le = 1 when only monotonic instability is present. The region of
mechanical quasi-equilibrium stability is situated on the plane (ε, Ram) between the
pairs of lines with the same numbers: 1 - 1, 2 - 2, etc. The line 4 corresponds to the
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Figure 7. Critical values of Ram versus ε for a gaseous mixture with Le = 0.5 (Le < 1) and different
values of vibrational Rayleigh number: 1, Rav = 0; 2, Rav = 2129; 3, Rav = 5000. The oscillatory
mode is the most unstable in the region ε < 0.

value Rav = 2129 and intersects the Ravm-axis just at the coordinates origin; recall
that this value is related to the instability threshold when static gravity is absent. The
instability in the range ε < 0 is mainly due to the long-wave modes (dotted lines).
It is interesting to examine line 2 (Rav = 200): in the region ε < 0 the only finite
interval of this stability boundary is connected with the cellular mode. The main
feature of the family of curves presented in figure 5 is that the stability region in the
plane (ε, Ram) reduces as the parameter Rav increases. This effect of destabilization is
definitely related to the increasing role of the vibrational mechanism of excitation.

The situation presented in figure 6 is qualitatively close to that just described for
figure 5. Here Le = 1.5 (Le > 1) and the monotonic mode is the most unstable for
all parameters considered.

The results presented in figure 7 correspond to the gaseous mixture with Pr = 0.75
and Sc = 1.5. The Lewis number in this case is Le = 0.5 (Le < 1) and so the
oscillatory instability is possible in the region of the anomalous Soret effect ε < 0.
It is interesting to note that the oscillatory form of instability may exist when the
system is heated from above and Rav is large (line 3, Rav = 5000).

Figure 8 refers to a typical case of a liquid mixture (Pr = 6.7, Sc = 677). It is
seen that the instability is of monotonic cellular character only in the range of small
positive or negative ε. The long-wave instability plays the main role when either ε > 0
and takes not too small values or ε < 0 when heating from above. In addition the
oscillatory form of instability is developed at ε < 0 when the layer is heated from
below (stability regions are confined between the curves with the same numbers).

Finally we present the stability diagram for a specific binary liquid mixture: water
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(90%w)–ethanol (10%w). In accordance with the data presented in the literature and
some estimations, the parameters can be fixed as follows: Pr = 11.3; Sc = 1100;
ε = −4.5×10−2. For these values of the parameters the stability diagram (or regimes)
is shown in figure 9 in the plane (Ra, Rav) as a result of minimization with respect
to the wavenumber. The line ε = 0 , corresponding to the case of a one-component
liquid, is given for comparison. In region I the mechanical quasi-equilibrium is
stable. The dashed line is the boundary of oscillatory instability; thus region II is
the region of oscillatory convection. It should be emphasized that a relatively small
negative Soret effect (the denser component is migrating toward the hot side) has little
influence on the instability threshold as compared to the case of a pure fluid. However
it changes the instability character qualitatively from monotonic to oscillatory (this
can be seen also in figures 3 and 4 where the transition from a monotonic mode to
the oscillatory one takes place at very small negative values of ε: see lines 4). The
dotted line corresponds to the long-wave monotonic instability, so in the region III
steady long wave convection exists. Figure 9 also depicts schematically the forms of
neutral curves in the plane (k, Ra) for each region.

8. Conclusions
In this paper we have investigated theoretically the linear stability of a plane

horizontal layer of a binary mixture with Soret effect subject to static gravity and
longitudinal high-frequency vibration. The study is based on the closed system of
equations for mean fields. The conditions of quasi-equilibrium are determined. The
spectral amplitude problem for small normal disturbances is formulated. The regular
method of perturbation with the wavenumber k as a small parameter is developed
to study the behaviour of long-wave modes and to determine the stability boundary
at k = 0. The eigenvalue problem for arbitrary k is solved numerically. The limiting
cases of the absence of vibration and of weightlessness are considered. Furthermore
situations involving both mechanisms of instability excitation, gravitational and vi-
brational, are analysed numerically for representative values of parameters. Three
types of instability are distinguished: monotonic cellular, monotonic long wave and
oscillatory cellular. The analysis allows one to establish the following characteristic
features. In the case of the normal Soret effect only monotonic instability takes
place and thermodiffusion plays a destabilizing role; in the case of the anomalous
Soret effect all the instability modes compete. The threshold of instability due to the
vibrational mechanism strongly depends on ε.

This text presents results partly obtained in the framework of the Belgian pro-
gramme on Interuniversity Poles of Attraction (PAI Nr.21) initiated by the Belgian
State, Prime Minister’s Office, Federal Office for Scientific, Technological and Cultural
Affaires. The scientific responsibility is assumed by its authors. The research described
in this publication was made possible in part by Grant N MF5000 from the Interna-
tional Science Foundation. Collaboration between the authors was supported by the
European Community Grant ‘Human Capital and Mobility’ (ERBCHRXCT930106).
The authors appreciate the helpful comments of the reviewers.
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